18 research outputs found

    A discrete linearizability test based on multiscale analysis

    Get PDF
    In this paper we consider the classification of dispersive linearizable partial difference equations defined on a quad-graph by the multiple scale reduction around their harmonic solution. We show that the A1, A2 and A3 linearizability conditions restrain the number of the parameters which enter into the equation. A subclass of the equations which pass the A3 C-integrability conditions can be linearized by a Möbius transformation

    Classification of discrete systems on a square lattice

    Full text link
    We consider the classification up to a Möbius transformation of real linearizable and integrable partial difference equations with dispersion defined on a square lattice by the multiscale reduction around their harmonic solution. We show that the A1, A2, and A3 linearizability and integrability conditions constrain the number of parameters in the equation, but these conditions are insufficient for a complete characterization of the subclass of multilinear equations on a square lattice

    Point Symmetries of Generalized Toda Field Theories II Applications of the Symmetries

    Full text link
    The Lie symmetries of a large class of generalized Toda field theories are studied and used to perform symmetry reduction. Reductions lead to generalized Toda lattices on one hand, to periodic systems on the other. Boundary conditions are introduced to reduce theories on an infinite lattice to those on semi-infinite, or finite ones.Comment: 26 pages, no figure

    Lie point symmetries of difference equations and lattices

    Full text link
    A method is presented for finding the Lie point symmetry transformations acting simultaneously on difference equations and lattices, while leaving the solution set of the corresponding difference scheme invariant. The method is applied to several examples. The found symmetry groups are used to obtain particular solutions of differential-difference equations

    Lie discrete symmetries of lattice equations

    Full text link
    We extend two of the methods previously introduced to find discrete symmetries of differential equations to the case of difference and differential-difference equations. As an example of the application of the methods, we construct the discrete symmetries of the discrete Painlev\'e I equation and of the Toda lattice equation

    Discrete Analog of the Burgers Equation

    Full text link
    We propose the set of coupled ordinary differential equations dn_j/dt=(n_{j-1})^2-(n_j)^2 as a discrete analog of the classic Burgers equation. We focus on traveling waves and triangular waves, and find that these special solutions of the discrete system capture major features of their continuous counterpart. In particular, the propagation velocity of a traveling wave and the shape of a triangular wave match the continuous behavior. However, there are some subtle differences. For traveling waves, the propagating front can be extremely sharp as it exhibits double exponential decay. For triangular waves, there is an unexpected logarithmic shift in the location of the front. We establish these results using asymptotic analysis, heuristic arguments, and direct numerical integration.Comment: 6 pages, 5 figure

    Continuous Symmetries of Difference Equations

    Full text link
    Lie group theory was originally created more than 100 years ago as a tool for solving ordinary and partial differential equations. In this article we review the results of a much more recent program: the use of Lie groups to study difference equations. We show that the mismatch between continuous symmetries and discrete equations can be resolved in at least two manners. One is to use generalized symmetries acting on solutions of difference equations, but leaving the lattice invariant. The other is to restrict to point symmetries, but to allow them to also transform the lattice.Comment: Review articl

    Discrete Multiscale Analysis: A Biatomic Lattice System

    Full text link
    We discuss a discrete approach to the multiscale reductive perturbative method and apply it to a biatomic chain with a nonlinear interaction between the atoms. This system is important to describe the time evolution of localized solitonic excitations. We require that also the reduced equation be discrete. To do so coherently we need to discretize the time variable to be able to get asymptotic discrete waves and carry out a discrete multiscale expansion around them. Our resulting nonlinear equation will be a kind of discrete Nonlinear Schr\"odinger equation. If we make its continuum limit, we obtain the standard Nonlinear Schr\"odinger differential equation

    Partially integrable nonlinear equations with one higher symmetry

    Get PDF
    In this letter, we present a family of second order in time nonlinear partial differential equations, which have only one higher symmetry. These equations are not integrable, but have a solution depending on one arbitrary function
    corecore